Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ki-Young Choi, ${ }^{\text {a }}$ Han-Hyoung
Lee, ${ }^{\text {a }}$ Douglas R. Smyth, ${ }^{\text {b }}$
II-Hwan Suh ${ }^{\text {c }}+$ and Edward R. T. Tiekink ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Cultural Heritage Conservation Science, Kongju National University, Kongju 314-701, Korea, ${ }^{\text {b }}$ Department of Chemistry, The University of Adelaide, Australia 5005, and ${ }^{\text {c Department of Physics, Chungnam National }}$ University, Taejon 305-764, Korea

+ On sabbatical leave; current address: Department of Chemistry, The University of Adelaide, Australia 5005.

Correspondence e-mail:
edward.tiekink@adelaide.edu.au

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.130$
Data-to-parameter ratio $=20.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

4,11-Bis(acetamido)-7,14-dimethyl-4,11-diaza-1,8diazoniacyclotetradecane diperchlorate dihydrate

The title compound features a doubly protonated dimethyland bis(methylcarboxamide)-substituted tetraazacyclotetradecane with the pendant arms disposed over the cavity, an arrangement that is facilitated by intramolecular hydrogenbonding interactions. The dication occupies a special position about an inversion centre, whereas the ClO_{4}^{-}anion and the water molecule are in general positions, thus forming a crystal with the overall composition $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The crystal structure is stabilized by a variety of hydrogenbonding contacts involving the dication, perchlorate anion and solvent water molecule.

Comment

The crystal structure of the title compound, (I), comprises dications, perchlorate anions and solvent water molecules in the ratio 1:2:2. The cation (Fig. 1) occupies a special position about an inversion centre so that the four N atoms within the macrocycle are coplanar. Protonation occurs at the N1 atom and this is reflected in the systematic differences in the $\mathrm{N} 1-\mathrm{C}$ and N4-C bond distances (Table 1). The pendant acetamide groups lie to either side of the N_{4} plane and are orientated so as to place the carbonyl O atoms over the cavity of the macrocycle.

This configuration is stabilized by hydrogen-bonding interactions involving the N1-bound H1n atoms which are directed towards the inside of the cavity. Thus, $\mathrm{O} 4^{\prime \prime}$ is equally separated from H 1 n and the symmetry-related $\mathrm{H} 1 \mathrm{n}^{\mathrm{i}}$ atoms, indicating that each H 1 n atom is bifurcated and that a hydrogen-bonded $\mathrm{H}_{2} \mathrm{O}_{2}$ square is formed perpendicular to the N_{4} plane [symmetry code: (i) $-x,-y,-z$]. Geometric details of the hydrogen-bonding system in the structure of the title compound are given in Table 2.

The $\mathrm{O} 4^{\prime \prime}$ atom also forms an acceptor interaction with the solvent water molecule and the other water-bound H atom

Received 17 April 2001 Accepted 27 April 2001 Online 30 April 2001

Figure 1
The molecular structure and crystallographic numbering scheme for the dication in (I). Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
forms a donor interaction to a perchlorate O atom. The solvent water molecule is also involved in an acceptor interaction with the cationic NH_{2} group of the macrocycle. Each of the amide H atoms forms a donor interaction with one of the perchlorate O atoms.

The aforementioned hydrogen-bonding network results in a structure that may be described as being comprised of alternating stacks of cations, and anions and water molecules aligned along the c direction.

Experimental

The 1,8-bis(acetamido)-7,14-dimethyl-1,4,8,11-tetraazacyclotetradecane compound was prepared in the following manner: 7,14-dimethyl-1,4,8,11-tetraazacyclotetradecane (Fairbank et al., 1985) (2.28 g , $0.01 \mathrm{~mol})$ in ethanol $(20 \mathrm{ml})$ was added to a solution of 2-chloroacetamide $(4.68 \mathrm{~g}, 0.05 \mathrm{~mol})$ and triethylamine $(6.07 \mathrm{~g}, 0.06 \mathrm{~mol})$ also in ethanol $(30 \mathrm{ml})$. The mixture was then refluxed for one day. After the solution had been allowed to stand for three days, a quantity of colourless crystals precipitated. These were recrystallized from a water/acetonitrile ($1: 1,20 \mathrm{ml}$) mixture. Crystals of the title compound were isolated as colourless blocks from the attempted reaction of 1,8 -bis(acetamido)-7,14-dimethyl-1,4,8,11-tetraazacyclotetradecane and zinc perchlorate in aqueous medium.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=579.43$
Monoclinic, $C 2 / c$
$a=16.576$ (3) Å
$b=10.877$ (6) \AA
$c=14.314$ (2) A
$\beta=90.25(1)^{\circ}{ }^{\circ}$
$V=2581(1) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.491 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 20 \\
& \quad \text { reflections } \\
& \theta=7.5-14.6^{\circ} \\
& \mu=0.32 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.36 \times 0.23 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku AFC-7R diffractometer $\omega-2 \theta$ scans
4647 measured reflections
2965 independent reflections
1545 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& h=-21 \rightarrow 8 \\
& k=0 \rightarrow 14 \\
& l=-18 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 400 \text { reflections } \\
& \quad \text { intensity decay: } 1.8 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.130$
$S=0.98$
2965 reflections
144 parameters

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.061 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}_{\AA^{-3}}{ }^{-3}$
$\Delta \rho_{\max }=0.30 \mathrm{e} \AA^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 4^{\prime \prime}-\mathrm{C} 4^{\prime \prime}$	$1.241(3)$	$\mathrm{N} 4^{\prime \prime}-\mathrm{C} 4^{\prime \prime}$	$1.331(4)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.495(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.519(4)$
$\mathrm{N} 1-\mathrm{C} 7^{\mathrm{i}}$	$1.507(3)$	$\mathrm{C} 4^{\prime}-\mathrm{C} 4^{\prime \prime}$	$1.516(4)$
$\mathrm{N} 4-\mathrm{C} 3$	$1.471(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.521(4)$
$\mathrm{N} 4-\mathrm{C} 4^{\prime}$	$1.463(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.521(4)$
$\mathrm{N} 4-\mathrm{C} 5$	$1.481(3)$	$\mathrm{C} 7-\mathrm{C} 7^{\prime}$	$1.520(4)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 7^{\mathrm{i}}$	$114.7(2)$	$\mathrm{O} 4^{\prime \prime}-\mathrm{C} 4^{\prime \prime}-\mathrm{C} 4^{\prime}$	$120.9(2)$
$\mathrm{C} 4^{\prime}-\mathrm{N} 4-\mathrm{C} 3$	$111.7(2)$	$\mathrm{N} 4^{\prime \prime}-\mathrm{C} 4^{\prime \prime}-\mathrm{C} 4^{\prime}$	$115.9(3)$
$\mathrm{C} 4^{\prime}-\mathrm{N} 4-\mathrm{C} 5$	$110.2(2)$	$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6$	$113.3(2)$
$\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 5$	$108.6(2)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$114.8(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$111.7(2)$	$\mathrm{C} 7^{\prime}-\mathrm{C} 7-\mathrm{C} 6$	$112.2(2)$
$\mathrm{N} 4-\mathrm{C} 3-\mathrm{C} 2$	$114.0(2)$	$\mathrm{C} 7^{\prime}-\mathrm{C} 7-\mathrm{N} 1^{\mathrm{i}}$	$111.1(2)$
$\mathrm{N} 4-\mathrm{C} 4^{\prime}-\mathrm{C} 4^{\prime \prime}$	$113.3(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1^{\mathrm{i}}$	$108.1(2)$
$\mathrm{O} 4^{\prime \prime}-\mathrm{C} 4^{\prime \prime}-\mathrm{N} 4^{\prime \prime}$	$123.2(3)$		

Symmetry code: (i) $-x,-y,-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{n} \cdots \mathrm{O}^{\prime \prime}$	0.93	2.53	$3.083(3)$	118
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{n} \cdots 4^{\prime \prime \mathrm{i}}$	0.93	2.54	$3.079(3)$	118
$\mathrm{O} 1 w-\mathrm{H} 20 \cdots 4^{\prime \prime}$	0.99	1.76	$2.744(3)$	176
$\mathrm{O} 1 w-\mathrm{H} 10 \cdots \mathrm{O} 2^{\text {ii }}$	0.90	2.02	$2.903(3)$	166
$\mathrm{~N} 1-\mathrm{H} 2 \mathrm{n} \cdots \mathrm{O} 1 w^{\text {iii }}$	0.88	1.92	$2.768(3)$	163
$\mathrm{~N} 4^{\prime \prime}-\mathrm{H} 3 \mathrm{n} \cdots \mathrm{O}_{1} 3^{\text {iv }}$	0.95	2.27	$3.110(4)$	148
$\mathrm{~N} 4^{\prime \prime}-\mathrm{H} 4 \mathrm{n} \cdots \mathrm{O}^{\mathrm{v}}$	0.95	2.26	$3.122(4)$	151

Symmetry codes: (i) $-x,-y,-z$; (ii) $-\frac{1}{2}-x, \frac{1}{2}-y,-z$; (iii) $x,-y, \frac{1}{2}+z$; (iv)
$x, 1-y, z-\frac{1}{2}$; (v) $-x, 1-y,-z$.
The C-bound H atoms were placed in geometrically calculated positions and included in the final refinement in the riding-model approximation with an overall displacement parameter. The O- and N -bound H atoms were located from a difference Fourier map but were not refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by a grant (No. 2001-1-12200-0082) from the Basic Research Program of the Korea Science and

organic papers

Engineering Foundation. The Australian Academy of Science is gratefully acknowledged for support to allow IHS to spend sabbatical leave in Adelaide. The Australian Research Council is thanked for support of the crystallographic facility.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.

Fairbank, M. G., Norman, P. R. \& McAuley, A. (1985). Inorg. Chem. 24, 26392644.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1996). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN for Windows. Version 1.05. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

